ŀ	Programme Outcomes (PO): B.Sc. Physics (CBCS)	
Goals:		
The Departm	ent has formulated three broad educational goals for the	
_	te degree programs:	
O	ledge: To provide students with the basic foundation in physics and Nanotechnology,	
v	the interplay of theory and experiment, and to motivate scientific enthusiasm and curiosity and the joy of learning.	
Problem solvi	ing skills: To provide students with the tools needed to analyse problems, apply	
	mathematical formalism and experimentation, and synthesize ideas.	
Employment	and technical skills: To provide the students with technical skills necessary for	
P	successful careers in physics/Nano-technology and related or alternative careers for which a physics foundation can be very useful. These include mathematics, computers, electronics and devices, and communication skills (oral and written	
Knowledge	After completing B.Sc. Physics Programme students will be able to:	
Outcome		
	 PO1: Transfer and apply the acquired fundamental knowledge of physics, including basic concepts and principles of 1) classical mechanics, electrodynamics, quantum mechanics, Statistical Mechanics and thermodynamics; (2) mathematical (analytic and numerical) methods and experimental methods for physics to study different branches of physics PO2: Demonstrate the ability to translate a physical description to a mathematical equation, and conversely, explain the physical meaning of the mathematics, represent key aspects of physics through graphs and diagrams, and use geometric arguments in problem-solving 	
Skills	After completing B.Sc. Physics Programme students will be able to:	
Outcome	 PO3: Apply and demonstrate knowledge of concepts of physics, to analyze a variety of physical phenomena PO4: Demonstrate the learned laboratory skills, enabling them to take measurements in a physics laboratory and analyse the measurements to draw valid conclusions PO5: Capable of oral and written scientific communication, and will prove that they can think critically and work independently. PO6: Communicate effectively using graphical techniques, reports and presentations within a scientific environment. PO7: Use and apply professional software for scientific data analysis and presentation PO8: Respond effectively to unfamiliar problems in scientific contexts PO9: Plan, execute and report the results of a complex extended experiment or investigation, using appropriate methods to analyze data and to evaluate the 	

level of its uncertainty

	PO10: Integrate and apply these skills to study different branches of physics.
Generic	PO11: Work comfortably with numbers and analyzing an issue quantitatively,
Competencies	acquire knowledge effectively by self-study and work independently, present
	information in a clear, concise and logical manner and apply appropriate
	analytical and approximation methods
Attitude/Value	After completing B.Sc. Physics Programme students should have developed some
Outcomes	positive attitudes and will have:
	PO12: Willingness to take up responsibility in study and work
	Confidence in his/her capabilities
	Capacity to work effectively in a team
	Motivation for learning and experimentation

Programme Specific Outcomes (PSO)

Programme	After completing B.Sc. Physics, students will be able to
Specific Outcomes	
	PSO1: Demonstrate and understanding of principles and theories of physics.
	These include: Newtonian Mechanics, thermodynamics, atomic and
	Molecular physics, electrodynamics, electronics, optics, nuclear physics, quantum mechanics;
	PSO2: Apply vector algebra, differential and integral calculus as well as graphical methods to solve physics problems;
	PSO3: Demonstrate ability to apply knowledge learned in classroom to set and perform simple laboratory experiments;
	PSO4 : solve physics problems using the appropriate methods in mathematical, theoretical and computational physics

Course Outcomes (CO) B.Sc. Physics (CBCS)

F.Y.B.Sc. Physics Semester I (CBCS)	
Course	Outcomes
	After completion of these courses' students should be able to;
PHY111: Mechanics and	CO1: Demonstrate an intermediate knowledge of Newton's Laws and the
Properties of Matter	equations of motion
1	CO2: Analyse the forces on the object and apply them in calculations of the
	motion of simple systems using the free body diagrams
	CO3:Determine whether using conservation of energy or conservation of
	momentum would be more appropriate for solving a dynamics problem
	CO4: Apply the concepts of elasticity to real world problems. CO5: List fundamental forces in nature, applications and factors affecting
	surface tension.
	CO6: Demonstrate different applications of Bernoulli's theorem, laws of
	elasticity, surface tension.
PHY112: Physics	CO1: Define absorption, spontaneous emission and stimulated emission
principles and	process and describe Laser action describe different atomic models
applications	in order to understand atomic structure
	CO2: Classify different types of bonding & their properties.
	CO3: Draw electromagnetic spectrum showing different regions and
	analyze vibrational& rotational spectra of diatomic molecule.
	CO4: Study the properties of Laser and its applications.
	CO5: Quote essential principles of operation of radar system and develop
	the radar for any given frequency
PHY-113 :Physics	CO1: acquire technical and manipulative skills in using laboratory
Laboratory-IA	equipment's, tools and materials.
	CO2: understand of laboratory procedures including safety and scientific
	techniques.
	CO3: skill development in collaborative learning and teamwork in
	lab setting.
F.Y.B.Sc. Physics Sen	nester II (CBCS)
PHY121: Heat and	CO1: Define laws of thermodynamics, entropy, thermodynamic processes
Thermodynamics	etc.
	CO2: Describe Andrew's experiment, Amagat's experiment, Carnot
	engine concept of entropy.
	CO3: Derive expression for efficiency of heat engine (Otto cycle, Diesel
	cycle, Carnot cycle), latent heat equation, adiabatic relations for
	perfect gas, work done during isothermal and adiabatic change.
	CO4: Determine critical constants using Vander Waal's gas equation
	Reduced equation of state
	CO5: Compare reversible and irreversible processes, adiabatic and
	isothermal process,
	CO6: Illustrate that work is a path dependent function using PV diagram
	and to solve entropy for reversible and irreversible process.
	CO7: Apply first law of thermodynamics to solve problems.
DIIIV100 Ell () ! !	CO8: Categorize thermometers and state its applications
PHY122: Electricity and	CO1: Define the basic terms such as electric field, electric potential,
Magnetism	magnetic intensity, magnetic induction, magnetic susceptibility and
	electric and magnetic flux.
	CO2: State and conceptualise basic laws in electromagnetic.

CO3: Explain the superposition principle, gauss's law in dielectrics and	
relation between three electric vectors.	
CO4: Solve numerical problems using Coulombs Law ,Gauss's law, Biot-	
Savart's law, Ampere circuital law and principle of superposition	
CO5: Determine the electric field and potential due to an electric dipole	
and different types of charge distribution.	
CO6: Determine magnetic induction due to various current distributions	
CO7: Derive the relation between three magnetic vectors and compare	
different types of magnetic material.	
CO8: Describe soft and hard magnets on the basis of hysteresis loop.	
CO1: Demonstrate an ability to collect data through observation	
CO2: Acquire technical and manipulative skills in using laboratory equipment, tools and materials	
CO3: Experimentation and interpreting data.	
CO4: Demonstrate an understanding of laboratory procedures including	
safety, and scientific methods.	
CO5: Demonstrate a deeper understanding of abstract concepts and	
theories gained by experiencing and visualizing them as authentic	
phenomena.	
CO6: Acquire the complementary skills of collaborative learning and	
teamwork in laboratory settings	
Course Outcomes)	
ester III (CBCS)	
CO1: define the basic operations in complex numbers;	
CO2: explain graphical representation of complex numbers and calculate	
roots of complex numbers;	
CO3: solve partial differential equations in Physics;	
CO4: discuss vector algebra required in Physics;	
CO5: define and calculate the gradient, divergence and curl of a field; CO6: define order, degree and homogeneity of ordinary differential	
equation;	
CO7: explain singular points of ordinary differential equation;	
CO8: develop problem-solving skills of identifying strategies to solve	
unfamiliar problem	
CO1: Apply different theorems and laws to electrical circuits.	
CO2: Understand the relations in electricity.	
CO3: Understand the parameters, characteristics and working of	
transistors.	
CO4: Understand the functions of operational amplifiers.	
CO5: Design circuits using transistors and applications of operational	
amplifiers.	
CO6: Understand the Boolean algebra and logic circuits. CO1: Use various instruments and equipment.	
CO2: design experiments to test a hypothesis and/or determine the value	
of an unknown quantity.	
CO3: Describe the methodology of science and the relationship between	
observation and theory.	
CO4: Set up experimental equipment to implement an experimental	
approach.	

	CO5: Analyse data, plot appropriate graphs and reach conclusions from
	your data analysis.
	CO6: Work in a group to plan, implement and report on a project/
	experiment.
	CO7: Keep a well-maintained and instructive laboratory logbook.
	CO8: Express their knowledge and ideas through oral and written
	language.
S.Y.B.Sc. Physics Seme	ster IV (CBCS)
PHY241: Oscillations,	CO1: define periodic and oscillatory motion;
Waves and sound	CO2: setup and solve differential equations of motion for simple
	harmonic, damped, and forced oscillators;
	CO3: describe oscillatory motion with graphs and equations, and use
	these descriptions to solve problems of oscillatory motion;
	CO4: discuss phenomenon of resonance and apply in different applications;
	CO5: set and solve differential equation for wave motion for longitudinal
	and transverse waves;
	CO6: calculate the phase velocity, energy and intensity of simple
	harmonic waves;
	CO7: discuss the Doppler effect, and predict in qualitative terms the
	frequency change that will occur for relative motion between source
	and observer or listener;
	CO8: Explain in qualitative terms how frequency, amplitude, and wave
	shape affect the pitch, intensity, and quality of tones produced by
	musical instruments.
PHY242: Optics	CO1: Describe the geometrical formation of images by thin lenses, lens
	equation and lens makers formula using fundamental laws of
	geometrical optics.
	CO2: Use mathematical analysis to calculate properties of image, formed
	by combination of lenses and applies theory of optics to calculate the
	cardinal points of an optical system and design optical devices
	CO3: Describe optical aberrations produced in image by lenses and methods of their removal.
	CO4: Describe the construction and operation of optical devices,
	including, eyepieces, compound microscope, grating, polarizers etc.
	CO5: Use mathematical analysis to find bright and dark fringes in an
	interference pattern of thin and wedge shaped film and find a
	wavelength of light using newton's rings
	CO6: Interpret a diffraction pattern to determine resolution of an optical
	system and grating CO7: Demonstrate an ability to solve problems using 'paraxial' optics-
	based formulae, numerical calculations and graphical drawings.
	CO8: Geometrical determination of polarization of light and concept and
	determine a polarization state of light by interpreting polarizer
PHY243: Physics	CO1: Use various instruments and equipment.
Laboratory-2B	CO2: design experiments to test a hypothesis and/or determine the value
Laboratory 20	of an unknown quantity.
	CO3: Describe the methodology of science and the relationship between
	observation and theory.
	CO4: Set up experimental equipment to implement an experimental
L	1 - 1 2 at any annual squipment to imprement an experimental

	approach.
	CO5: Analyse data, plot appropriate graphs and reach conclusions from
	your data analysis.
	CO6: Work in a group to plan, implement and report on a project/
	experiment.
	CO7: Keep a well-maintained and instructive laboratory logbook.
	CO8: Express their knowledge and ideas through oral and written
	language.
	Course Outcomes
T.Y.B.Sc. Physics Seme	
PHY351: Mathematical	CO1: Define and generate a general equation for gradient, divergence,
methods of Physics	curl & laplacian in an orthogonal curvilinear coordinate system &
	their applications in physics.
	CO2: Define proper time, minkowskis space, Time dilation, length
	contraction
	CO3: Describe Michelson Morley experiment & its negative result.
	CO4: Illustrate the problems on Frobenius method of series solution and
	to differentiate point of expansion of given differential equations.
	CO5: Evaluate & plot Legendre polynomials, Hermite polynomials,
	Bessel functions of first kind.
	CO6: List the most important special functions in physics and to solve
	different properties related to special functions.
PHY352: Solid State	CO1: Define crystal structure to develop it in 2D as well as 3D and
Physics:	to determine Indices for 'Directions' and 'Planes' in a crystal
	structure.
	CO2: Give original examples of crystal structures and to analyze them
	with packing fraction, coordination number, number of atoms per
	unit cell etc.
	CO3: Derive Bragg Diffraction condition in direct lattice and to relate it
	in reciprocal lattice using Ewald construction.
	CO4: Classify the crystal structure by XRD diffraction and to simplify
	formula for interplaner distance.
	CO5: Apply free electron theory to restate thermal and electrical
	properties
	CO6: Explain superconductivity and Meissner effect
PHY353: Classical	CO1: Solve advanced problems involving the dynamic motion of classical
Mechanics:	mechanical systems with an intermediate knowledge of Newton's
	laws of motion
	CO2: Apply the concept of centre of mass and mechanics of system of
	particles and conservation of energy, linear and angular momentum
	to solve dynamics problems
	CO3: Demonstrate an intermediate knowledge of central-force motion
	and the concept of converting two body problems to single body
	problem and apply advanced methods to complex central-force
	motion problems.
	CO4: Demonstrate an I ntermediate knowledge of concept of laboratory
	frame and centre of mass frame and their use to calculate results of
	scattering experiments.
	CO5: Apply the concept scattering to get important information regarding

	the nature of interaction between atomic and subatomic particles
	through experiments
	CO6: Derive Lagrange and Hamilton's equations, and represent the
	equations of motion for simple mechanical systems such as: the
	Atwood's machine, Simple pendulum using these formulations of
	classical mechanics.
	CO7: Acquire working knowledge of the methods of Hamiltonian
	Dynamics and compute the Hamilton equations of motion for
	mechanical systems
PHY354: Atomic and	CO1: Derive the formulae for total energy of an atom so that energy level
Molecular Physics:	diagram can be drawn and also able to obtain the expression for spin orbit
	interaction energy.
	CO2: State laws, postulates in atomic and molecular Physics and able to
	compare various models of atomic structure.
	CO3: Calculate quantum state of electrons in an atom, spectral notation
	and electronic configuration of atom.
	CO4: Obtain formulae for Zeeman shift, wavelength of emitted X-ray s,
	Raman shift, rotational and vibrational energy for diatomic molecule and
	apply it.
	CO5: Explain origin of line spectra and able to compare continuous
	spectra, characteristic spectra and can differentiate between rotational,
	vibrational and electronic spectra.
	CO6: Explain application of Duane and Hunt's rule, Moseley's law and its
	importance, applications of X-rays, Raman effect and Auger effect.
	CO7: Draw and explain X-ray spectra, spectrum with and without
	magnetic field (Zeeman effect), Raman spectra and molecular spectra
	using quantum treatment
	CO8: Explain experimental arrangement to produce X-ray,, to observe
DYYYATT G	Raman effect and Zeeman effect.
PHY355: Computational	CO1: define types of programming languages and their uses;
Physics:	CO2: gain basic competency with a widely used C-language for both
	general and scientific programming;
	CO3: define operators and expression in C-programming and navigate
	commands;
	CO4: explain control statements and loops as well as capable of writing
	C-program to solve problems;
	CO5: describe arrays and pointers and apply them in C program;
	CO6: critically present different numerical methods to solve different
	types of physical and technical problems;
	CO7: implement numerical algorithms into C-program and visualize the
	results of the computations
	CO8: demonstrate the ability to estimate the errors in the use of numerical
	methods

PHY356(B): Elements of	CO1: Define and outline the rules of solubility, deformation in metals,
Material Science	basic concepts in phase diagram, molecular phases and the concept of
Wateriar Science	smart materials.
	CO2: Explain the imperfections in solids, mechanism of plastic
	deformation by slip, properties of ceramic materials, the importance and
	objective of phase diagram.
	CO3: Calculate and solve problems on stress and strain of materials,
	CRSS of single phase metals, weight in percentage of compositions using
	lever rule.
	CO4: List the defects in solids, diffusion mechanisms and types of phase
	diagram.
	CO5: Classify between elastic deformation and plastic deformation
	CO6: Derive the CRSS of metals and the lever rule for phase diagrams.
	CO7: Discuss the types of smart materials, properties of smart materials
	and their applications.
PHY-357 Physics	CO1: Describe the underlying theory of experiments in the course.
Laboratory-3A	CO2: Perform derivations of theoretical models of relevance for the
Euboratory ori	experiments in the course.
	CO3: Follow instructions to perform laboratory experiments in Optics,
	Thermodynamics, Mechanics, Modern Physics, Electronics and
	Electromagnetics.
	CO4: Document their results, using correct procedures and protocols.
	CO5: Perform a quantitative analysis of experimental data including the
	use of computational and statistical methods where relevant.
	CO6: Interpret relationships in graphed data and develop an intuition for
	alternative plotting methods and communicate results from laboratory
	experiments, orally or in a written laboratory report.
	CO7: Calculate permissible standard error in any physics experiment
	CO8: Derive conclusions from the analysis of own data.
	CO9: Assess the language used to describe physics experiments and how
	it can alter perceptions of the method and results
PHY-358 Physics	CO1: Describe the underlying theory of experiments in the course.
Laboratory-3B	CO2: Perform derivations of theoretical models of relevance for the
	experiments in the course.
	CO3: Follow instructions to perform laboratory experiments in Optics,
	Thermodynamics, Mechanics, Modern Physics, Electronics and
	Electromagnetics.
	CO4: Document their results, using correct procedures and protocols.
	CO5: Perform a quantitative analysis of experimental data including the
	use of computational and statistical methods where relevant.
	CO6: Interpret relationships in graphed data and develop an intuition for
	alternative plotting methods and communicate results from laboratory
	experiments, orally or in a written laboratory report.
	CO7: Calculate permissible standard error in any physics experiment
	CO8: Derive conclusions from the analysis of own data.
	CO9: Assess the language used to describe physics experiments and how
	it can alter perceptions of the method and results
PHY-359 Project-I	CO1: design and test hypothesis
	CO2: Describe the underlying theory of experiments in the course.
	CO3: Perform derivations of theoretical models of relevance for the

	experiments in the course
	experiments in the course. CO4: Document their results, using correct procedures and protocols.
	CO5: Perform a quantitative analysis of experimental data including the
	use of computational and statistical methods where relevant. CO6: Interpret relationships in graphed data and develop an intuition for
	alternative plotting methods and communicate results from laboratory
	experiments, orally or in a written laboratory report. CO7: write a project report with literature review.
	1 0 1
DIIV 2510(I) Engage	CO1: Students become complete of conducting energy audits and give
PHY-3510(I) Energy	CO1:Students become capable of conducting energy audits and give
studies	consultancy in that field.
	CO2: Students can design different types of solar heaters for small
	domestic as well as large scale community level applications.
	CO3:Students acquire skills to implement solar P-V systems at
	domestic levels as well as for office premises and educational
	institutions. Students become able to start their own enterprise in
	net metering.
	CO4: Students get ideas and hence become self-employed in the field of
	design, production, commissioning and implementation of bio-
	mass energy sources, bio-gas plants, gasifiers, wind mills, hybrid systems etc.
	-
	CO5:Students can go for research in the fields of super-capacitors,
	battery technologies, fuel cells andmaterial synthesis for
	implementation of these technologies. CO6: Students become successful entrepreneurs in the energy field.
	<u> </u>
	CO7: Students strive to make the regions where they live and work
	self-sufficient in generating and fulfilling theirown energy needs using different energy solutions.
PHY-3511 SEC (M):	CO1: Students will acquire basic knowledge of biomedical instrumentation.
Biomedical Instruments	CO2: Students will acquire basic knowledge of biomedical histrumentation. CO2: Students can handle and operate different equipment's like ECG,
Biomedical instituments	Oxymeter, and Glucometer.
	CO3: Students will be able to record the different health parameters using it.
	CO4: Student will also able to analyze and interpret the recorded data.
T.Y.B.Sc. Physics Semester	
PHY361: Classical	CO1: Define the Biot-savart law, Amperes law, Coulombs law, Electric
Electrodynamics:	field, Electric susceptibility, Magnetic field &Faradays law.
	CO2: Equation of continuity, Magnetic vector potential, B.H curve,
	Maxwell's equation &wave equations.
	CO3: Solve numerical problem on coulombs force, magnetic induction,
	magnetic permeability and induced voltage, magnitude of electric
	&magnetic vectors.
	CO4: Summarize pointing vector, polarization, reflection & refraction.
	CO5:Apply Biot Savart law in different symmetry problem.
	CO6: List the applications of Amperes law, Biot Savart law, Poynting
	theorem.
	CO7: Elaborate magnetic properties of the material.
PHY362: Quantum	CO1: outline the historical aspects of development of quantum mechanics;
Mechanics:	CO2: explain the differences between classical and quantum mechanics;
	CO3: describe matter waves, wave function and uncertainty principle;
	CO4: describe Schrodinger's equation and its steady state form;
	COT. describe semouniger's equation and its steady state form,

	CO5: solve Schrodinger's steady state equation for simple potentials to
	obtain eigen functions and eigen values
	CO6: apply Schrodinger's steady state equation for spherically symmetric
	potentials obtain eigen functions and eigen values;
	CO7: interpret quantum numbers in atomic system;
	CO8: discuss operator algebra in quantum mechanics.
PHY363:	CO1: Describe transport phenomena and compute coefficient of thermal
Thermodynamics and	conductivity, viscosity and diffusion in terms of mean free path
statistical physics:	CO2: Define and discuss the concepts and roles of thermodynamic
	functions from the view point of statistical mechanics
	CO3: Derive Binomial distribution and Gaussian probability distribution
	using random walk problem and calculate mean values for a
	statistical system
	CO4: Discuss the concepts of microstate and macro state, basic postulates
	and behaviour of density of states for model system and calculate the
	number of microstates for different statistical systems
	CO5: Differentiate thermal, mechanical and general interaction between
	statistical system
	CO6: Derive and compare Maxwell Boltzmann, Bose-Einstein and Fermi-
	Dirac distributions; state where they are applicable and explain the
	connection between classical
	CO7: Derive probability distribution formula for micro canonical,
	canonical ensemble and calculate mean values in canonical ensemble
	CO8: Discuss applications for canonical ensemble
PHY364: Nuclear	CO1: Define threshold voltage, dead time and recovery time in GM
Physics:	counter, threshold energy, nuclear fission, nuclear fusion, critical size,
	critical mass.
	CO2: Determine the basic properties of nucleus.
	CO3: Classify nuclear radiations, elementary particles and nuclear states,
	nuclear detectors.
	CO4: Compose baryons and mesons with Quark model.
	CO5: Derive expression for energy of ions and frequency of RF signal in
	cyclotron, Q value equation, threshold energy, decay constant.
	CO6: Estimate binding energy from fission
	CO7: Justify nuclear reactions using conservation laws
	CO8: Explain the different processes by which energetic particles interact
	with matter, kinematics of various reactors and decay processes
PHY365: Advanced	CO1: Know basic components like diode and its types, BJT, FET
Electronics:	CO2: Study of amplifiers and its types.
	CO3: Introduction to power supplies.
	CO4: Details of Digital electronics.
PHY366(Q): Physics of	CO1: to introduce the basic physics behind size and effect of
Nanomaterials (Elective)	nano materials.
(======================================	CO2: to understand the working principle of equipments used in
	nanostructures.
	CO3: students will gain knowledge of introduction to nanomaterials and
	their properties and growth techniques
	CO4: It also discusses tools like UV, XRD, SEM and TEM to
	characterize the nanomaterials and applications of nanomaterials.
	broadening.
	orouseming.

PHY367: Laboratory	CO1: Describe the underlying theory of experiments in the course.
course I	CO2: Perform derivations of theoretical models of relevance for the
course i	experiments in the course.
	CO3: Follow instructions to perform laboratory experiments in Optics,
	Thermodynamics, Mechanics, Modern Physics, Electronics and
	Electromagnetics.
	CO4: Document their results, using correct procedures and protocols. CO5: Perform a quantitative analysis of experimental data including the
	use of computational and statistical methods where relevant.
	CO6: Interpret relationships in graphed data and develop an intuition for
	alternative plotting methods and communicate results from laboratory
	experiments, orally or in a written laboratory report.
	CO7: Calculate permissible standard error in any physics experiment
	CO8: Derive conclusions from the analysis of own data.
	CO9: Assess the language used to describe physics experiments and how
DIIVACO I I	it can alter perceptions of the method and results
PHY368: Laboratory	CO1: Describe the underlying theory of experiments in the course.
course II	CO2: Perform derivations of theoretical models of relevance for the
	experiments in the course.
	CO3: Follow instructions to perform laboratory experiments in Optics,
	Thermodynamics, Mechanics, Modern Physics, Electronics and
	Electromagnetics.
	CO4: Document their results, using correct procedures and protocols.
	CO5: Perform a quantitative analysis of experimental data including the
	use of computational and statistical methods where relevant.
	CO6: Interpret relationships in graphed data and develop an intuition for
	alternative plotting methods and communicate results from laboratory
	experiments, orally or in a written laboratory report.
	CO7: Calculate permissible standard error in any physics experiment
	CO8: Derive conclusions from the analysis of own data.
	CO9: Assess the language used to describe physics experiments and how
DIVIZACO Y I	it can alter perceptions of the method and results
PHY369: Laboratory	CO1: design and test hypothesis
course III (Project)	CO2: Describe the underlying theory of experiments in the course.
	CO3: Perform derivations of theoretical models of relevance for the
	experiments in the course.
	CO4: Document their results, using correct procedures and protocols.
	CO5: Perform a quantitative analysis of experimental data including the
	use of computational and statistical methods where relevant.
	CO6: Interpret relationships in graphed data and develop an intuition for
	alternative plotting methods and communicate results from laboratory
	experiments, orally or in a written laboratory report.
	CO7: write a project report with literature review.
DIIV. 2610(7)	CO8: defend the outcome of project work in scientific manner.
PHY-3610(Z)	CO1: Calibrate hydraulic, pneumatic and mechanical measuring and
Caibration Techniques	control equipment: setting, adjustment, validation or verification of
	mechanical, pneumatic, hydraulic, measuring and control instruments
	using reference standards in accordance with predetermined procedures.
	CO2: Calibrate electrical and electronic measuring and control
	equipment: setting, adjustment, validation or verification of electrical,

	electronic measuring and control instruments using reference standards in accordance with predetermined procedures. CO3: Carryout maintenance activities on instrumentation and control panel.
PHY- 3611(AB)	CO1: Able to test soil and water parameters.
Instrumentation for	CO2: Able to develop their own juice extract plant.
Agriculture	CO3: Able to developed their own green house